Associated Clustering and Classification Method for Electric Power Load Forecasting
نویسندگان
چکیده
⎯ In the process of power load forecasting, electricity experts always divide the forecasting situation into several categories, and the same category uses the same forecasting model. There exists such a situation that some load curve which domain experts consider belonging to the same category has shown the different characteristics, but some load curve which belongs to different category seems very similar, and usually able to gather into a category by clustering. For this problem, the definition of associated matrix was proposed in this paper, and based on this conception the associated clustering-classification algorithm was proposed, We applied this algorithm to data sample classification for power load prediction, the experiment showed that the classification results obtained by our method were more reliable.
منابع مشابه
Short-Term Load Forecasting for Electric Power Systems Using the PSO-SVR and FCM Clustering Techniques
This paper presents a new combined method for the short-term load forecasting of electric power systems based on the Fuzzy c-means (FCM) clustering, particle swarm optimization (PSO) and support vector regression (SVR) techniques. The training samples used in this method are of the same data type as the learning samples in the forecasting process and selected by a fuzzy clustering technique acc...
متن کاملShort term load forecast by using Locally Linear Embedding manifold learning and a hybrid RBF-Fuzzy network
The aim of the short term load forecasting is to forecast the electric power load for unit commitment, evaluating the reliability of the system, economic dispatch, and so on. Short term load forecasting obviously plays an important role in traditional non-cooperative power systems. Moreover, in a restructured power system a generator company (GENCO) should predict the system demand and its corr...
متن کاملNeural Networks in Electric Load Forecasting:A Comprehensive Survey
Review and classification of electric load forecasting (LF) techniques based on artificial neuralnetworks (ANN) is presented. A basic ANNs architectures used in LF reviewed. A wide range of ANNoriented applications for forecasting are given in the literature. These are classified into five groups:(1) ANNs in short-term LF, (2) ANNs in mid-term LF, (3) ANNs in long-term LF, (4) Hybrid ANNs inLF,...
متن کاملLoad Forecasting in Power Systems Using Emotional Learning
Load forecasting is an important problem in the operation and planning of electrical power generation. To minimize the operating cost, electric supplier will use forecasted load to control the number of running generator unit. Short-term load forecasting (STLF) is for hour to hour forecasting and important to daily maintaining of power plant. Most important factors in load forecasting includes ...
متن کاملFuzzy Load Forecasting of Electric Power System
In order to efficiently improve the prediction accuracy, two load forecasting model based on fuzzy theory are presented, which are fuzzy clustering model and improved fuzzy regression analysis model .The method of fuzzy clustering is used to divide the area by the similar feature of load increasing. The new division is promising to improve the result of evident degree of clustering index to pow...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010